IMPATTO DEL DIABETE E DELLE SUE COMPPLICANZE SULLA PERFORMANCE NEUROMUSCOLARE

Numerosi studi clinici e sperimentali hanno ampiamente dimostrato come la patologia diabetica e le complicanze ad essa associate siano responsabili di un marcato deterioramento della performance del sistema neuromuscolare. Ad oggi, non è chiaro se tale declino sia direttamente relazionato allo stato diabetico o dipendente dalla presenza di complicanze croniche. L'obiettivo di questa tesi è stato quello di investigare la relazione tra diabete e complicanze croniche sulla performance del sistema neuromuscolare ed in particolare sulla forza e la resistenza muscolare. Per ottenere ciò, sono stati arruolati in tre differenti studi 146 diabetici di tipo 2 (80 uomini e 66 donne) e 53 diabetici di tipo 1 (27 uomini e 28 donne).

Nel primo studio, i partecipanti affetti da diabete di tipo 2 erano caratterizzati da una bassa forza e resistenza muscolare rispetto ad un gruppo di controllo sano. Tale decadimento interessava sia gli arti superiori che inferiori e si verificava indipendentemente dalla presenza di complicanze croniche.

Nel secondo studio, la presenza di malattie cardiovascolari o polineuropatia diabetica determinava un più severo decadimento della resistenza muscolare rispetto al solo stato diabetico. Questa alterazione interessava sia gli arti superiori che inferiori nei pazienti con neuropatia, mentre in quelli affetti da patologie cardiovascolari, tale difetto si verificava solo agli arti inferiori. Dall'analisi multivariata, l'affaticabilità muscolare degli arti superiori risultava essere indipendentemente associata con la velocità di conduzione sensitiva mentre agli arti inferiori questa correlava sia con la velocità di conduzione sensitiva che con l’ankle brachial-index.

Infine, nel terzo studio il diabete di tipo 1 era associato indipendentemente dalla presenza di complicanze croniche con un marcato declino della forza e della resistenza muscolare che veniva ad essere esacerbato in presenza della polineuropatia. Dall'analisi univariata, forza e resistenza muscolare erano fortemente associate sia con il controllo glicemico che con la velocità di conduzione sia sensitive che motoria.

Questi studi dimostrano chiaramente come il diabete sia caratterizzato da un marcato deterioramento della performance del sistema neuromuscolare. Tale alterazione si instaura fin dalle prime fasi della malattia ed appare essere aggravata dalla presenza di complicanze croniche come la polineuropatia diabetica e la vasculopatia periferica. I possibili meccanismi alla base di tale disfunzione sembrano essere relativati sia ad un effetto diretto indotto dallo stato di iperglicemia sul
sistema neuromuscolare che da un effetto mediato dalla alterazione sia nervosa che vascolare periferica indotta dalla presenza di complicanze croniche.

Candidato: Giorgio Orlando
Supervisor: Massimo Sacchetti
IMPACT OF DIABETES AND ITS COMPLICATIONS ON 
NEUROMUSCULAR PERFORMANCE

In recent years, numerous studies have investigated the effects of diabetes and its complications on the performance of the neuromuscular system. Currently, it is not well understood whether this decline is intrinsically linked to diabetes, or if it is dependent on associated complications. The data presented here investigates the relationship between diabetes and chronic long-term complications on muscle strength and fatigability of the upper and lower body muscles. To achieve this, 146 type 2 diabetes patients’ (80 men and 66 women; mean age, 66.8 ± 7.8 years) and 53 type 1 diabetes patients (27 men and 28 women mean age, 49.8 ± 7.7 years) were recruited into three different studies.

In study one, type 2 diabetes patients, independent of major diabetic complications, possessed a higher muscle fatigability which affected both upper and lower body muscle when compared to healthy matched control subjects.

In study two, the presence of diabetic polyneuropathy and cardiovascular disease was found to determine a more severe decline in muscle fatigability when compared to the diabetic state. This impairment was present in neuropathic patients in both upper and lower body muscles, whereas in those with cardiovascular disease it was only in lower body muscles. The fatigability of the upper body was independently associated with sensory nerve conduction velocity, whereas fatigability of the lower body was correlated with both sensory nerve conduction velocity and ankle brachial-index.

Finally, study three reported that type 1 diabetes, before the onset of complications, caused a lower muscle strength and a higher muscle fatigability, which were more severe in the presence of diabetic polyneuropathy. Muscle strength and fatigability were strongly associated with sensory and nerve function as well as with glycaemic control.

These studies have shown for the first time that type 1 and type 2 diabetes conditions are responsible for similar detrimental effects on neuromuscular system performance. Such alterations occurred from the initial stage of the disease and were aggravated by the onset of diabetic neuropathy and cardiovascular disease. The aetiology of this dysfunction appeared to be related to poor glycaemic control, nervous dysfunction and peripheral vascular damage. Finally, muscle strength and fatigue defects may occur earlier during the natural history of diabetic polyneuropathy when only sensory nerve function is involved.
Candidate: Giorgio Orlando
Supervisor: Massimo Sacchetti